PCC | Mahmud | Statistics| statmania.info |
Press space
or n
to go to next slide
\(x-\frac{1}{x}=4\), \(x^2+\frac{1}{x^2}=?\)
(2x+3)(4x-5)
a+b=5, a-b=3
Find \(2a^2+2b^2\) and ab; which one is bigger?
Resolve into factors
\(3x-75x^3\)
\(a^2-2ab+b^2-p^2\)
\(8a+ap^3\)
\(x^4-6x^2+1\)
\(x^2+7x-120\)
\(a^2+7ab+12b^2\)
\((x^2-x)^2+3(x^2-x)-40\)
\(x^2+(3a+4b)x+(2a^2+5ab+3b^2)\)
\(x^2-x-(a+1)(a+2)\)
\(2(x+y)^2-3(x+y)-2\)
\(ax^2+(a^2+1)x+a\)
\(36a^2b^2c^4d^5, 54a^5c^2d^4, and \space 90a^4b^3c^2\)
\(x^2-3x, x^2-9, x^2-4x+3\)
\(a^2b(a^3-b^3), a^2b^2(a^4+a^2b^2+b^4), (a^3b^2+a^2b^3+ab^4)\)
\(a^3-3a^2-10a, a^3+6a^2+8a, a^4-5a^3-14a^2\)
\(5a^2b^3c^2,10ab^2c^3, 15ab^3c\)
\(x^2+3x+2, x^2-1, x^2+x-2\)
\(6x^2-x-1, 3x^2+7x+2, 2x^2+3x-2\)
If \(x^2+\frac{1}{x^2}=3\) find
\(\frac{4x^2y^3z^5}{9x^5y^2z^3}\)
\(\frac{x-y}{xy}, \frac{y-z}{yz}, \frac{z-x}{zx}\)
\(\frac{a}{bc}, \frac{b}{ca}, \frac{c}{ab}\)
\(\frac{1}{x-2}+\frac{1}{x+2}+\frac{4}{x-4}\)
\(\frac{1}{x^-1}+\frac{1}{x^4-1}+\frac{1}{x^8-1}\)
\(\frac{1}{y(x-y)}-\frac{1}{x(x+y)}\)
\(\frac{x+1}{1+x+x^2}-\frac{x-1}{1-x+x^2}\)
\(\frac{1}{x-y}-\frac{x^2-xy+y^2}{x^3+y^3}\)
\(\frac{x-y}{(x+y)(y+z)}+\frac{y-z}{(y+z)(z+x)}+\frac{z-x}{(z+x)(x+y)}\)
\(\frac{1}{x-1}-\frac{1}{x+1}-\frac{2}{x^2+1}+\frac{4}{x^4+1}\)
\(\frac{x^2+3x-4}{x^2-7x+12}\) by \(\frac{x^2-9}{x^2-16}\)
\(\frac{x^2-3x+2}{x^2-4x+3}, \frac{x^2-5x+6}{x^2-7x+12}, \frac{x^2-16}{x^2-9}\)
\(\frac{x^3+y^3}{a^2+ab^2+b^3}, \frac{a^3-b^2}{x^2-xy+y^2}, \frac{ab}{x+y}\)
\(\frac{x^3-y^3}{x+y}\) by \(\frac{x^2+xy+y^2}{x^2-y^2}\)
\((1-\frac c {a+b})(\frac a {a+b+c}-\frac a {a+b-c})\)
\((\frac{2x+y}{x+y}-1) \div (1-\frac y {x+y})\)
\((\frac a {a+b}-\frac b {a-b}) \div (\frac a {a-b} - \frac b {a+b})\)
Observe the pair of equations below:
5 years ago the ratio of ages of father and son was 7:1 and after 10 years, the ratio would be 5:2
There are two numbers. The sum of thrice of the first number and the second number is 17 and sum of the first and thrice of the second number is 19.