8.2 Three Definitions
8.2.1 Classical
\(P (A) = \frac{n(A)}{n(S)}\)
8.2.2 Relative frequency
\[\lim_{n(S) \to \infty} \frac{n(A)}{n(S)}\]
8.2.3 Axiomatic
Three axioms
Say, S is sample space and A is an event
- \(0 \le P (A) \le 1\) (NOT \(P(A) \ge 0\))
- At least one of S will occur. P (S) = 1; Certain event.
- \(P(A_1 U A_2 U ... U A_n)=P(A_1) + P(A_2) + ... + P(A_n)\) or
- \[P\left(\cup _{i=1}^{\infty }E_{i}\right)=\sum _{i=1}^{\infty }P(E_{i})\]